Thursday, July 24, 2008
How To Conduct A Wireless Site Survey –Part 5
Well I have you roaming around the floor with a laptop quantifying network metrics and on the hunt for rogues. Now is the time to revisit how waves radiate, propagate, disperse, and reflect. You need to know this stuff in order to provide a logical and accurate survey.
Recall my analogy about a pebble tossed into a calm pond. Always go back to this picture when trying to visualize radio waves. The calm pond is open air. In your environment, most likely open air will be those spaces between obstacles. Obstacles change the behavior of dispersing RF radiation. When you think of obstacles, think of how an in-flight tennis ball might react to the obstacle.
You could throw the ball straight down a hallway, but if you bounce it off of a wall, you can visualize the ball bounce back and forth between the two sides as it transverses the hallway. Radio waves do that too, only it looks more like this: Part of the wave goes straight down the hallway, but each edge of the wave bounces back and forth between the two walls. The portion of the wave that heads straight down the hallway arrives at the antenna first, and the bouncing signals arrive milliseconds later. The network card is smart enough to know that although it is receiving that same transmission over again, only one copy of the transmission is utilized.
As a column will cast a shadow in the path of a flashlight beam, obstacles in the path of a wireless transmission will generate RF Shadows. If you have an Access Point antenna mounted on a building column, the air on the backside of the column will be in the RF shadow.
Heavy walls and doors dampen or attenuate signal; metal reflects or bounces the signal backwards. RF signals cannot penetrate metal. Materials that are porous absorb the energy of the signal, materials high in water content also suck up signal. Going back to the pebble on water analogy, RF waves can sometimes skip like a stone across the surface of the water and end up farther than what would be a normal range.
You can see that the more stuff that is in the area to be surveyed, the more complex the survey. As a surveyor, you must make sure that you have ample (but not too much) coverage in any given area.
Thursday, July 3, 2008
How to conduct a wireless site survey part 4
Spend some time prepping your survey before you arrive on site. Study your maps and photos. Guess at likely locations for Access Points. Make sure that all your tools and drivers are ready to go. When complete head on into the airspace. This is where all the fun begins. If this is a survey for a new wireless LAN you will need to be VERY observant of many things that will impact the quality of both the air and the survey. This space is an empty pool that you are going to fill with radio signal.
Please understand--if you are not going to be as accurate as you possibly can, it is best not to even bother with a survey as it will be as waste of time, expense, and effort. This is not to say that an accurate survey will be a waste if you don’t spend lots of time and money on it. You will be surprised on what you can accomplish on a “shoe string”. Creative thinking, experience, and innovation go a long way here. You must be diligent, tenacious, and through.
A good place to start a survey is in the center of the air space. Boot your laptop computer and with one of the utilities that come with you wireless NIC (Network Interface Card) take a listen. If you have a combination card that can hear several RF bands at once that’s a good thing. If not shuttle your cards in and out in compliance with your survey requirements.
Record any Access Points, Channels, signal strengths, and Clients you may pick up from your NIC. You will be working with and around these units now.
For your survey you will be capturing and recording several metrics based upon what your equipment can “hear”.
- Signal Strength
- Noise
- Signal to Noise
- Channel (analogous to FM radio station channels)
- Rogues (a rogue is a neighboring Access Point sharing the air space that you are surveying)
- SSIDs (an SSID is basically the Wireless Network Name)
Surveying is both an Art and Science based discipline. It is difficult only in that we are attempting to quantify that which we cannot see or hear. We rely on equipment to tell us if we are on track, how well the system is operating, and what can be done to improve conditions.
There is something else though. Call it experience, call it intuition. An experienced surveyor can look at the environment and know all kinds of details before a laptop key is ever pressed. Remember your visualizations? That only touched the surface of what you need to be able to visualize. Your imagination combined with the right equipment however may be what is needed to do a ACCURATE survey. My definition is accuracy is practicality. If people are satisfied with the outcome the survey is accurate. It does not matter if the numbers are favorable, or not favorable. We survey for usability. We survey to resolve problems.
There are commercial packages on the market that do lots of things for you in a survey. They are like calculators being used in a math test. They get right to the answer. To understand, to really understand a survey though, you should be able to survey manually--pencil and paper.
Begin your survey with your map and notebook. Start in one corner and work yourself around the environment finally ending where you began. Figure on moving at about ten feet every twenty seconds for a detailed survey, and about half of that for a quick summary of the area.
If it is a new survey, hang an Access Point in one of your targeted locations, power it up, and match your SSID and Security data to the AP.
If you have done your preparation, you have a good idea where the trouble spots will be and if it is a new installation, perhaps where the new Access Points will serve best. What does your utility tell you?
- How many Access Points it can hear?
- How many SSIDs?
- Signal Strength?
- Noise?
- Thuput?
As you move from point to point on your map recording what you hear, you will be able to understand what is happening in the environment. Pay particular attention to noise. The relationship between signal strength and noise should be equal to or greater than 20dB. So if there is little or no noise you can have a faint signal, but if there is a lot of noise you will need a signal that is at least 20dB higher than what is referred to as the "Noise Floor".
Monday, June 30, 2008
How to Conduct a Wireless Site Survey Part 3
Meetings
In part 1 I talked about what equipment you will need to do a site survey; in part 2 I helped you visualize what the airwaves would look like while walking through the area to be surveyed. Having the equipment and an idea of what you are looking for is a great start; we need to push on however into specific skill sets.
The next thing that we need to do is to get the Survey Requirements, especially if it is a new installation. We need to meet with the end users of the system and determine what they need, and what they want. They may not necessarily realize that they need security, but they probably know that they want to push graphics through the air which means to us engineers, high speed.
If you are re-surveying a live pre-existing space for specific metrics such as throughput, errors, noise, or rogues, you will need to get detailed information about what the end user is experiencing. Latency, loss off data, and other tangible events are where you should start.
You will need blueprints of the facility (if available), otherwise you will need to make your own maps. Square footage, room size, ceiling heights, and obstructions need to be taken into consideration.
TIP: Take detailed and accurate notes at all of your discussions. As systems evolve sometimes expectations do as well.
You are surveying for the middle links in a network, so logically you will need to know both endpoints:
* Where data is sent from (laptops, hand held scanners, etc.)
* Where data is going to (Internet, across the office, to a printer, mainframe, etc.)
Many professionals fail to scope for capacity. A single access point could probably cover an area the size of a grammar-school gymnasium but if there are a couple of hundred people in seated in the room, the system will choke big time. How many users in each AP's zone is a crucial metric to know. A good rule of thumb may be no more than 20 per AP.
As long as I brought up the topic of a high density of people in a small area, how would you service them? In the 802.11g world you have (realistically) only 3 channels to choose from--we said 20 per AP... that's 60 people running OK. What about the other 140 people?
You would have to have a high density of Access Points, closely mounted, all running minimum power and the most attenuation you could get on their antennas. You would want the coverage of each AP zone to be very small. Very small. Not pretty but doable.
Knowing what the end user needs and wants is the basis of what you will accomplish in your survey. For example if you determine that most of the clients have 802.11g NICs with a few 802.11b units, you may want to explain how converting 802.11g wall to wall is a better investment, especially if they are going to be sending graphics.
To recap this installment provides direction on :
* End user requirements on a new install, or report on pre-existing problems
* Type of equipment they are using
* Accurate detailed notes and Maps.
Friday, June 27, 2008
Thursday, June 26, 2008
How to Conduct a Wireless Survey Part 2
Visualizing Radio Waves
To give you time to assemble your survey kit, I thought that the next logical stop on our journey would be your understanding of how RF works in your environment. To do this, I’m going to have you visualize how it would look if you could see the radio waves. You will have a mental picture that will always be with you.
Every beginning RF class teaches that radio waves radiate of a dipole antenna in nice neat concentric circles progressively getting larger and weaker as they move away from the antenna; picture this: you standing at the edge of a perfectly calm lake and tossing in a rock. Visualize what the waves look like. This is what radio waves look like (only a great deal smaller); what radio transmission would look like outdoors in a parking lot or empty field.
Is that your environment though? Not hardly. There are all kinds of things in our world that scatter and deflect radio transmissions. What would it look like if we returned to our calm lake but tossed a rock under the legs of a pier? You would see the initial circle, but as it encountered the legs of the pier, some of the waves would get bounced back and dispersed, some would wrap around. You would see a disturbed radiation pattern of waves. This is a bit truer to our environment.
Now picture a city street with tall buildings. I just placed an Access Point at the intersection of two streets. Do you think that the radiation pattern will be circular? Well perhaps right around the Access Point there will be concentric circles, but if you looked at the pattern from above and could see how far the waves radiated, you would notice that they extend farther than they would in open air due to the buildings “herding” the waves down the corridors. The radiation pattern would look perhaps like an “H” or “t”. Can you visualize that? This is how waves might move down a hallway in an office.
Mentally skip a stone across the water. Waves can skip across the air (sometimes that’s why we can hear radio stations far away from where they are transmitted from). Waves can bounce off of hard surfaces. They can be absorbed; in a warehouse with fairly equal coverage throughout a few pallets of peat moss can render a “hole” in the coverage around those skids. There is another effect called “radio shadow” where behind an obstruction the coverage falters the similarly to the way light casts a shadow on an obstruction.
Knowing how radio waves move is an important first step in conducting a site survey. With a bit of experience you should be able to walk into an environment and have an understanding of how the RF is working or what you need to do to enable a wireless environment.
I will revisit the topic later as we advance in our study. We will look at radiation patterns of various antennas.
Labels:
gman,
LinkedIn,
survey,
wesselhoff,
wireless
Wednesday, June 25, 2008
How to Conduct a Wireless Site Survey Part 1
How to Begin
There are a lot of articles written about how to do a wireless site survey, but from what I’ve seen they don’t give the real story as far as how to organize, and conceptualize the survey. I will take a modular approach to teaching this discipline which is a heterogeneous mix of physics, experience, and creativity.
Before you begin site survey you will need a survey kit. These kits vary in complexity and price but the most basic kit will have the following items:
Maps: Map of area to be surveyed.
* A large blueprint is useful for fine details
* You will need several 8’x10’ clipboard maps for notes related to finding at specific locales (a single map can be photocopied—copies can be handed out to people who work in the airspace that have specific problems or concerns).
* Softcopy is necessary for most survey software packages, reports
Laptop PC with Survey Software
* You will need a survey console. There are many survey tools out there these days at this writing the defacto standard is AirMagnet.
* Several wireless NIC cards that operate in the radio bands that you are surveying (each card views elements such as signal-to-noise, roaming, signal strength a bit differently. Many survey products load proprietary firmware drivers for each specific card so that it has more precise control of the card.
Digital Camera, notebook, 100’ tape measure.
* You will need to take accurate notes for future reference.
This is the very least you will need to conduct a wireless site survey.
There are several commercial survey kits on the market that have components such as Access Points, and different types of Antennas (to play ‘what ifs’), and other tools to help aid the surveyor. If you have the budget for one of these kits (that often come in travel ready flight-cases), they are recommended; they will give you additional options, views, and abilities for conducting a survey.
Don't think however that you need to spend tens of thousands in surveying equipment in order to to an accurate and meaningful wireless survey. The most vital piece of equipment is your intellect.
Tuesday, June 10, 2008
Wireless Survey Questionnaire #1 New Installation:
Instructions: Interview End User to obtain as many answers as you can, then investigate the rest.
- What is the approximate Square Footage of the environment that you want to provide wireless coverage for?
- How high are the ceilings?
- Are there any immediate concerns about the environment that you are about to outfit with wireless (for example: Outdoor environment, area with lots of metal obstructions)?
- Is your facility in a populated area, or out in the country?
- Are there neighboring businesses within 100 yards of your environment? If so how many?
- Approximately How many uses will access the wireless network at any given time?
- What type of devices will use the network (for example laptop computers, or hand held scanners)?
- Do you know what type Wireless Network you want to install (for example: 802.11g, 802.11n)?
- Will there be a mixed environment of different types of equipment with varying capabilities?
- Do you know what type of Data you will be sending across the Wireless Link (for example: Graphics, or Bar Codes)?
Sunday, June 1, 2008
Site Survey Pricing
Survey Menu: ala cart / Smorg.
Pricing.
You will probably will want to make at least $50 an hour for your trouble. In a large installation, the end users will want MANY deliverables for the amount of time an accurate survey will take. In a small shop you might need to provide a solid network, and summary report.
You might want to consider price packaging your services, especially on smaller surveys. For example you could offer a survey with an air audit, and recommendations for $200 if you think that you can get the job done in four hours or less (this is doable in a store-front business).
A warehouse may take three eight hour days, you might want to consider block pricing your time in a flat rate structure such as $500-800 per day, or perhaps a flat rate for a two or three day survey.
As far as incidentals go, you have “zoning” or travel charges, consumables (such as batteries-what you will use specifically for each particular survey). Some Analysts group reports into packages and bulk price them some charge per items, and some have in inclusive deals.
As far as reporting goes here are some options:
* Signal Strength
* Noise
* S/N
* Rogues/Neighbor AP maps.
* Throughput
* Channel Map
* Packet Traces
Pricing.
You will probably will want to make at least $50 an hour for your trouble. In a large installation, the end users will want MANY deliverables for the amount of time an accurate survey will take. In a small shop you might need to provide a solid network, and summary report.
You might want to consider price packaging your services, especially on smaller surveys. For example you could offer a survey with an air audit, and recommendations for $200 if you think that you can get the job done in four hours or less (this is doable in a store-front business).
A warehouse may take three eight hour days, you might want to consider block pricing your time in a flat rate structure such as $500-800 per day, or perhaps a flat rate for a two or three day survey.
As far as incidentals go, you have “zoning” or travel charges, consumables (such as batteries-what you will use specifically for each particular survey). Some Analysts group reports into packages and bulk price them some charge per items, and some have in inclusive deals.
As far as reporting goes here are some options:
* Signal Strength
* Noise
* S/N
* Rogues/Neighbor AP maps.
* Throughput
* Channel Map
* Packet Traces
Subscribe to:
Posts (Atom)